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In this work the problem of dynamfc and balanci of flexible rotors were •

considered, with problems were set and solved as the problem of the identifi-

cation of flexible rotor systems, or which is the same, the inverse problem of

the oscillation theory dealing with the task of the identifying the outside

influences and system parameters on the basis of the law of motion known. This

approach to the problem allows to disclose the picture of disbalances through-

out the rotor-under-test (something that traditional method of flexible rotor

balancing, based on natural oscillations, could not provide), and 10entxfy

dynamic characteristics of the system, which correspond to a selected mathe-

matical model. Eventually, various methods of balancing were developed depending

on the special features of the machines as their design, technology and opera-

tion specifications. Also, theoretical and practical methods are given for the

flexible rotor balancing at far-from-critical rotation frequences, which

methods do not necessarily require to know forms of oscillation, dissipation and

elasticity-and-inertia characteristics, and to use testing masses.
I. INTRODUCTION

The universal trend of reducing weight and gabarits of flying device

engines along with high power requirements has paved way for the wide-spread

application of flexible rotors and non-rigid supports. For these types of

rotors, dynamics problem dealing, whith the elimination of dangerous resonance

states in the area of operating rotation frequences of the machine, becomes

vital. For machines under development, which do not have any well-proven analogs

it is hardly possible to evaluate in terms of quantity such characteristics as

inertia, rigidity and damping capability judging only by the drawing of the

machine, for every one of construction elements comes simultaneously as a mass

and rigidity, a source of both exiting and extinguishing vibrations, and the

assumption of rotor non-deformity is no more valid. This brings us to the point

where principally new balancing, technique and dynamic research are required.

Now, a good deal of experimental methods are known, which allow to more

precisely evaluate the elasticity-and-inertia parameters, deflection curves and

rotation frequences while finishing the machine. However, these methods can not

always take into account the diversity of influencing factors and dynamic model

of the system. In the meanwhile, it is the task of a vital importance to find

accurate values of the said parameters, corresponding to the selected mathema-

tical model, thus making this model more effective. Finding values of these

parameters for subsequent ascertaining the deflection curve forms and rotation

frequences is an extremely important stage of realization of the most balancing
methods.

It is well known that now close attention has been given to the problem of

development of mathematical or dynamic models of higher accuracy, which models

have to reflect real objects, and as many of their real features as possible.

However, no calculation scheme can fully reflect the set of properties of the

real object (through the vast number of these properties), but it is possible to

make them close to reality. Any mathematical models are under risk of being

compromized, whatever close they might be to reality, if precisely dynamic

characteristics of the machine are unknown. Therefore, identification methods

are required, allowing to determine dissipation and elasticity-and-inertia

characteristics of the machine on the basis of appropriate experiments, the

sought-for parameters being calculated with regard for all more or less J
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_iempOrtant peculiarities of the machine. By practicing these methods
we can

scape the necessity for particularizing and analyzing every one of the
I

machine's characteristics. Parameters thus identified are all the more valuable

due to the fact that they were defined with regard to the selected idealization

of the real object, that is the said parameters were reduced to the selected

dynamic model describing the real system. Whether the selected dynamic model is

adequate to the real model and whether identified parameters are sufficiently

accurate, one can judge by how much measurred parameters of the real object

differ from those calculated in accord with the identified parameters. Criti-

cal rotation frequences, deflection curve forms, peaks of vibration et cetera

can serve as those criterion parameters. Plus, methods of identification can be

used to set the distribution of unbalances along the rotor axis. As the rotor

eccentricities are included in the equations for disturbed motion of the rotor,

it is possible to create identification algorithms of elasticity-and-inertia and

dissipation characteristics along with the rotor eccentricities at the same

time. The theory of flexible rotor balancing pays much attention to the problem

of computing the values of discrete correcting masses for rotors with pre-set

unbalanse, while the angular and linear values of the unbalance itself were

half-neglected. In the meanwhile, it is obvious that one has to know the

unbalance before getting to the task of finding solution to the set of problems
dealing with dynamic strength.

2. METHODS OF BALANCING AND IDENTIFICATION OF DYNAMIC

CHARACTERISTICS OF FLEXIBLE ROTORS

Taking into account rotor flexibility allows to state and solve very impor-

tant (although more complicated) problems which were beyond the rigid rotor

method possibilitiesl and first of all it allows to find eccentricities of any
masses placed along the rotor axis. But unbalance is not the value to be direct-

ly measured, instead it has to be calculated through some other directly

measured magnitudes connected with the former one by unknown operators. Hence,

it is evident that the only way to find the flexible rotor unbalances lies

through their identification on the results of operating testing of the machine

or any emulating testing. It is noteworthy that along with unbalances, elasti-

city-and-inertia and dissipation characteristics as well as all other characte-

ristics of the identification algorithm can be identified. As practice demons-

trated, complex structure rotors being tested at critical frequences get defor-

med in three-dimensional manner rather than in two-dimensional one, so that the

orthogonality conditions are not valid for them. Therefore, it is necessary to
develop balancing methods on the basis of real deformations at critical

frequences. But, as the critical frequency operation is not safe and it can

affect the strength and life of the construction, it is desirable to develop

balancing methods on natural curve form of the rotor, but at non-critical

friquences and with the restricted number of start-ups. There are sertain types

of machines which require balancing only under operation mode with unchanging

frequency value, while others have to be balanced over the full frequency range.

For each easel individual and economically effective balancing methods and

approaches can be employed. Far from all structures would permit the attaching

of testing masses. For such types of machines it is necessary to employ balan-
cing methods free from testing unbalances. As it is connected with considerable

difficulties to obtain complex object's natural oscillation forms, one should

permanently search for the balancing methods not requiring the said oscillatlon
forms.

Certain types of designs allow deflection measuring, while other reject the

possibility absolutly. Therefore, balancing methods are needed, resting on the

deflection measuring and support reactions, housing vibrations et cetera.

La Finally, in a number of cases a method is necessary which combines all !

bove-mentioned methods_ that is when there is no need to know curve forms and j
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F_scillation to work at critical of rotor rotation, or |
frequences or frequences

o use testing masses and additional start-ups, or even to know riqidity, mass
I

or demping parameters of the rotor - one has only to measure general weight and

external geometric dimensions.

The above-stated material proves a necessity for variuos methods of

flexible rotor balancing depended on specific designing, productive, operating,
economic and other features.

Identification algorithms of rotor characteristics of mass and reqidity as

well as their eccentricities were attained on the basis of solutions for the

differential and integral equations of the oscillations, such as Fredholm's

equations of the 2-nd kind [I], giving a description of non-balanced rotor

motion, the rotor having an arbitrary mass-and-rigidity distribution law.

2 L 2 L

y(z)= 60 ._m(s). o((z,s)-(y(s)+e(s) )ds-_- f I (s),B(z,s).(y' (s)÷ _ (s))ds,
o" 0

(I)

2 L 2 L

yo (z)=_. _m(s). _ (z,s).(y(s)+e(s))ds-_. f I (s_(z,s)-(y ° (s)÷_ (s))ds,
0 O

where y(z), y'(z) - is, respectively, deflection and turning angle o• coordinate

z cross-section of the rotor, y(s), y'(s), m(7), I(s), e(s),_ (s) is, recpecti-

vely, deflection and an31e of turning, linear mass, moment of inertia, radial

and angular eccentricities of the coordinate s cross-section of rotor L,O),_,B,_,

6 - respectively, the length, angular speed, and influence functions.

Two ways are suggested in respect of the search for solution to these

equations. The first one is to approximize the equations with a system of

linear equations, which are convenient for decription of the motion of rotors

with discrete parameters, while the second way is excellent for description of

rotors with distributed parameters using Gilbert-Shmidt theorem for accompli-

shing expansion in a series witn respect to deflection forms of some parameters.

Both ways of finding the solution would lead you to the balancing methods

resting on natural form of deflection at critical rotation frequences. The

difference between them is that the second way is usable after some restrictions

being imposed upon the distribution function,making the said expansion possible,

while the first way is free from these restrictions, and therefore it covers a

wider range of rotor types.

2.1. TESTING MASS BALANCING

There exists more general solution. Taking into account that a defection at

any rotation frequences can be represented by the sum of deflections (which

deflections are multiplyed by some constant factors), it is possible to employ

the method of balancing on natural deflection forms at any other rotation

frequency at which the rotor deflection can be detected; and doing this you can

use a single testing mass system whith a singe start-up of the machine.

Really, carring out the rotor deflection measurments at far-from-critical

frequences (first measurment is made on the rotor with initial unbalance, the

second one-on the rotor with testing unbalances system whose eccentricities are

similar to the measured elasticity line of the rotor) and accomplishing the

expansion of these deflections and eccentricities in series, you can find the

components of eccentricities of the counterbalances, and the whole system e(z).

As balancing frequences are subjected to no restrictions except for as indica-

tors of the rotor deformity, this common method when particularized by critical

frequences, turns into well-known balancing method at critical frequences.

Lr In those cases when natural deflection forms of a rotor are not known, the I
eceived information can be processed by means of expansion in series related t_
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any orthonormal system of fuctions such as sine series as shown below:
Ao n nkz

y(z)= _ + _.A .sin --,

2 k=1 k L

(2)

Bo n nkz

h(z)= -- +_B .sin --,
2 k=l k L

(3)

y_z) = _ ÷ _E_D .sin Ok=-

2 k=l k L

(4)

Fo n nkz

-- + _F sine(z) =

2 k=l k L

(5)

$

where y(z) and y (z) - is the deflection caused by the initial unbalance, and

the deflection appeared after attaching the testing unbalance system on the

rotor, respectively! h(z) and e(z) - are the systems of testing and initial

eccentricities, respectively; Ai, Bi, Di, Fi - coefficients of the expansions.

Assuming the unbalance-to-deflection ratio for similar expansion members to

be linear, we can obtain:

Fi=AiBi/(Di-Ai).

A÷ter the curves oT eccentricity projection on the two inter-perpendicular

planes have been determined their vector sum can be found, which allows to

obtain the form of the curve depicting the distribution of the initial eccentri-
cities.

It is noteworthy that you can use not only deflections functions to

implement these methods, but also their derivatives such as cross-section

turning angles, mechanical tensions, and relative deformation; note that the

highest form of unbalance reveals itself in a more apparent manner with the
(i)

deflection derivatives y that with the deflection itself, as can be seen from

the expression
i

(i) R o_ i nkz

y = -- • _.__A .k .sin --, i=1,2,3,4.

i k=l k L

L

2.2. BALANCING WITHOUT TESTING MASSES

This group of methods ensues from the first method of finding solution for

Fredholm equation and suggests the eccentricity identification on basis of sta-

tic coefficients of influence. The coefficient of influence is the value of

deflection (or turning angle) of the i-cross-section caused by unity force (or

bending moment) applied to the k-cross-section. The main idea of the method is

like the following: deflections and turning angles or one of these parameters

are measured at noncritical rotation frequencies and their projections on two

inter-perpendicular planes are substituted into equations (b); equations (6) are

solved for unknown projections oT eccentricities.

n 2 n 2

y =,_. m-_ ,03.(y + e ) -z_ I .B "U.)" (Y'+_ ),

i k=l k ik k yk k=1 k ik k yk (6)

L J
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n 2 n 2
y'=_ m .._ .oJ'(y + e ) -/___. I "6 ,0.)"(y'+_ ),

i k=l k ik yk k=l k ik k yk

1

Similar equations may be written and solved for the second projection of

deflections.

This group of methods gave birth to some methods, that can be distinguished

by the parameters to be measured such as deflections, turning angles, support

reactions, and vibrations.

2.3. PARAMETRIC IDENTIFICATION OF FLEXIBLE ROTORS

In order to escape the procedures of obtaining static coefficient of

influence as well, a group of identification algorithms was suggested allowing

to find the unknown elasticity-and-inertia characteristics related to the

mathematical model depicting the real rotor.

Let's consider the universally known dependences of the deflection theory:
2

M" (z,_ = q(z,OJ) = m(z).cx) -(y(z,OJ) + e (z)), (7)

zz y

where bending moment M(z,uO) at the rotation frequance OJ is equal to

M(z ,t,d ) =K (z,O2)" E1 (z) , (B)

The rotor axis curvature is determined from the expression

2 3/2

K=y" /(l+(y)) ) , (9)

and q(z,OJ) - is inertial load, E - is Young's modulus.

Taking into account the resistance forces we can obtain (denoting the total

moment of these forces through f(z,bJ)):

f(z,OJ) + M(z,(,O} = K(z,u.))-EI(z).

Using relations (7-9) we can obtain after some manipulations:

I

....... f" (z,ud) +_ (z)'K" (z,O.)) + 2o_ (z)-K_(z,uJ) +
m(z) zz o zz I z

2 2

+d (z).K(z,OJ)-CO.e(z) = OJ.y(z,CO),

2 y

(1)

where I d [El (z) ]

04 (z)=_-

i re(z) i

dz

, i=O, 1,2.

Let's reprezent the function - f" (z,CO)/m(z) as expanded in the series on
zz

z. Setting a finite number for members of the series we assume that the sum of

the abolished members would not violate the pre-set deflection measuring

accuracy. Hence,

L J
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0r_ (z)'(1) +=/ (z)-K" (z,CO) +2d (z).K_(z,_J) +d (z).K(z,oD)-
k=0 k o zz 1 z 2

2 2

-60.e (z) =O)-y(z,_d).

Y

The objective of consequent manipulations is to find the value of fuctions

(_ (z), k=O,1,...,n; e (z);_ (z), i=0, I,2 for some fixed point z=a. Thus we

k y i

have n+5 unknown values requiring for their determination the same number of

equations.

Then, we obtain the sought-for system of n+5 equations with the same number

of unknown values, putting down the previous equation for each value of(x) at

the point z=a. j

n k

Z:_ Ok-.. (a).C.x) + ote (a). K" (z,(.O) I

k=O k j o zz j ! + 2.d'(a)- K' (z,u.)) I +
z=a 1 z j -= a

2 2
+d (a). K(a,cO )-e (a)OJ = OJ- y(a,(D ),

2 j y j j j

j=1,2, ...n+5. (I0)

When we find the solution for this system we'll be able to determine the

unknown values at the pre-set point. Keeping in mind that this point z=a was

selected arbitrary we create the similar system for any other point z, obtaining

thus the sought-for values at this point.

In this manner we obtain functions e (z) and _ <z) (i=0, I,2).

y i

Carting out the similar manipulations for
unbalance vector:

D(z)=M(z), e (z) + e (z) ,

x y

e (z) we obtain the value of the

x

as well as the angle formed by this vector and OY-a×is.

tg# = e (z)/e (z).

x y

Finding the solution for the system of equations gives us not only the

eccentricity value but also_ (z), i=0, I,2 andS" (z), k=O,1,...,n

i k

The known values of _- <z) allow to determine a total moment of resistance,
k

whileo_ give reduced masses and regidities of the rotor

i

z L z

m(z)=M.exp(J (_ /d )dz)/_ (z)-f exp (_ (_ /d )du)dz/_ (Z),
o I o o o o 1 o o

L
El(z) =_ (z). m(z),

0 ]
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where M - is the mass of the rotor.
In the most general case, a number of eguations required for determining

all unknown values and the same number of rotation frequences at which deflec-

tion values are measured, is equal to n+5. In practice5 things are more simple.

If you know the law under which the resistance forces are changing5 you

need 4 equations; if this law is accompanied by a law of rigidity changing you

need only 3 equations; with uniform shaft - 2 equations are enough; and if you

know elasticity-and-inertia characteristics you'll need only one equation.

When you find it convenient to use a certain method such as, for example,

the electric strain-gauging for relative deformation measuring and (or) para-

meter stability tracking during the operating period, there are parametric

identification algorithms for eccentricities and flexural rigidity (or eccen-

tricities only) based on the relative deformation being measured, and then the

transition is made to the values of curvature, tension, bending moments, turning

angles and deflections.
2.4. PARAMETRIC IDENTIFICATION ON RELATIVE DEFORMATIONS

Let us use Hocke's law _=_.E and linear differential equation for curve

axis of the rotor

M = El-y" = EI-_/t, (11)

z Zz

where M - is a bending momentj _- is a relative deformation, t-is the distance

z
from the neutral axis to the fibres for which the _- measurment is taken.

For multidisk rotor which can to any degree of accuracy approximate (by

means of adjusting a number of disks) a rotor with an arbitary mass

distribution, nonbalanced forces are equal to
2

P = m .(e +y ).CO _ (12)

i i i i

where y can be determined by double integration of y"

i

Bending moment for an arbitrary cross-section of the rotor is equal to the

sum of all moments of external forces (including the support reactions) applied

to a single side (left or right) from the section examined
n

M = _ b •p (13)

zi k=1 ik k,

where b - coefficlents depending on the distances from the unbalanced forces to

ik

the supports and cross-section being examined; b are calculated in advance.
ik

Accomplishing the _- measurments at some non-critical frequences for n

sections we can determine the values of bending moments for these sections using

(11); then unbalanced forces can be found from (12). If these forces would now

be compensated with the appropriate counterbalances_ the balancing would De

correct only for the anqular speed O0.

To carry out the balancing over the full speed range, you have to determine

eccentricities e

i

the solution.

using (12). But you can choose another way of searching for

n

=_-E = M IW =_____b 'P IW , (14)j
L i i zi i k=l ik k i
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[-w ii
here W = is an axial moment of resistance for section i;

i Ri

7

Ri - radius of the rotor's cross-section.

The same can be written down differently

n 2

• El /t =_ b .(y + e )cO , i=1,2,...,n
i i i k=1 ik k k

(15)

Now, if the e

k i

times equations then was represented by system (15); this can be obtained by

measuring the values of_ for all sections at some other non-critical angular

speed CO . It can be shown that equations of the (15) type are independent.
2

2.5. STABILITY OF IDENTIFICATION ALGORITHMS _

Thus, all balancing methods requiring no testing masses, are based on the

identification of unbalances within the framework of inverse problems of

dynamics. In this connection, the stability of identification algorithms was

researched on the static influence factors known. The whole research is

published in works [4] and [5]. These works also hold all major results.

Fredhom's equation in the matrix form looks like the following (gyroscopic

moments neglected):
2

= A(_ ÷ g ),t.D (16)

and EI values are considered unknown, you have to get two

where _ and _ are vectors of n-dimension; A-square matrix of nxn dimenslon,

whose elements are the products of the static unfluence coefficients by the
masses of corresponding disks.

This model can be practically applied in cases when small measuring errors

of the values in equetion (16) (the values are measured experimentally) cause
similarly small eccentricity calculation errors.

Taking into account the measuring errors we can represent system (16) in
following form:

2 2

7 +_Y =(UJ +_CO ). (A+_A) (_ +_ +5 +_),

where - are the measuring errors.

In process of evaluating the relative error of the eccentricity identifi-

cation we can see from the following expression

2

{i_{l E II/_II I 2 C((E/60 )-A)
_< C(A).C (_- A)._ + _[(C(A)]-

2 2 2

li ii711 licE/cOI-All

i13 All

IIAII

2 2

I C((E/cO )-A) ia(,l_i
+ _. C(A) ,,

2 2

(where C-is the stipulation number of any square matrix B, which number is equal

to the product of the straight matrix norm by the norm of invers matrix,that is,

I JC(B)= liBiI" IIB II>.I,E- is the unit matrix), that the selected model is
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Ftaheoretocally in reality can not assume that measurment errors
stable, but as we

re likely to be less than any pre-set values, this problem is reduced to the

task of evaluating the solution accuracy, which is defined by the stipulation

numbers of the matreces involved.

We succeded in trying to disclose the physical sense of the matrix A

stipulation number. It can be evaluated initially by the ratio of squared
maximum and minimum natural rotation frequences for given discrete model. At

this point, a descrepancy has came over: on the one side, trying to approxxmate

the real rotor by increasing a number of masses, we bring the dynamic model
still closer to the real structure; on the other side we increase the

calculation error due to the growth of the stipulation number. Gyroscopic

moments (when included in the scheme) also contribute to the growth of the

calculation errors.

This is the sourse for obtaining quantitative relations between balancing

accuracy on the one hand and measuring devices and a number of masses

approximating the real rotor on the other hand. These relations allow to

determine the third factor on the two others. For example, you can select

measuring devices of required accuracy knowing the balancing accuracy and the

planes of correction.

To get the required accuracy under a high stipulation number you can use

the possibility to pass from the one identification algorithm to another one,

for example, from system of equations of the fourth special case of the method

described in section 2.3, with only one equation suggested.
3. EXAMPLE

We are going to analyse the results of the research and balancing of

aero-engine compressor rotor on static influence coefficients. The disk-and-drum

type compressor rotor (Fig. l) consists of ten separate disks bearing operating

fan blades on their rims. Factory balancing was carried out in usual way in tne

"rigid rotor" mode for the two correction planes on a balancing macnlne at 8_u

rpm with operating frequences within 10000...12500 rpm.

In the process of exploitation some defects emerged such as deformation of

the rear shaft, pin joint breakage, unpermissibly high resonance vibration level

of the whole aero-engine.

Varios calculating techniques for natural oscillation frequences did not

bring any reliable results due to the absence of precise data on the local

rigidities of rotor as well as on the support pliabilities.
To increase the calculating scheme effectiveness, statlc tests of a number

of rotors of this type were carried out, and precise values of static influence

coefficients were determined over all ten stages. The first critical rotation

frequency for this rotor fixed supports (the frequency was calculated on static
influence coefficients) turned out to be 11000 rpm. Practically this value

coincides with the third peak of vibration of the amplitude-and-frequency

characteristic of the rotor (Fig.2). Peaks of vibration in the reglon of 420V

rpm and 8300 rpm are connected with resonance oscillatlon of "ragxd" rotor on

pliable supports.

To check whether the precise values of the elastxcity-and-_nert_a characte-

ristics (reduced to the selected model) were used effectively,natural osc_llatl-

on frequency of this very rotor was calculated, but the calculation scheme

assumed only one general mass-that of the whole rotor (M=115,4 kg) with the

static influence coefficient in the centre-of-mass cross-section. The schemati-

zation error of the calculation of the first natural oscillation frequency

turned out to be not more than 1,5%.

Therefore, we decided to use the said single-mass model for balancing in

the region of the first critical rotation frequency, due to difficulties

Ldconnected with attaching correction masses to all stages of the rotor. Maximum !
eflection (y=0,15 mm) value of the eighth stage was assumed for the eccentri- j
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city identification at 10500 rpm. -7
On these data the value of e=0,17oi0 m was found from the expression

2

y=u_.m(y+e)_. Correcting mass was brought into on the score of the eighth stage

fan blade, which was replaced. Balancing results are shown on Fig.2.

The carried out research allowed to improve the deslgn anO balancing

technology of the rotor and to eleminate the indicated defects.

Eccentricity identification based on measured deflections of the rotor

using static influence coefficients was also carried out by Bradjko A.I. [6]

employing a computerized imitation model, laboratory physical model and a

natural rotor of compressor on an accelarating vacuum stand.

Table I holds data on mass of stages, static influence coefficients and

deflections of the 5-mass rotor, which he balanced.

2 6 2

For OJ =0,274.10 I/c the following values of eccentrlcities were

obtained:

-6 -6 -6

e =77,4.10 m; e =89,?.10 m; e =105-10 m;
! 2 3

-6 -6

• =79-10 m; e =59,5-10 m.
4 5

Correcting masses were attached to all of the five stages.

As a result of the balancing that was carried out, the maximum rotor

deflections were diminished almost by 4 times, and housing vibration were

diminished by 2,5 times.

CONCLUSIONS

The problem studying dynamics and high-frequency balancing o÷ $1ex_ole

rotor systems can be set and solved as the task of identification of elast_clty-

and-inertia characteristics and eccentricities corresponding to a selected

calculating model within the framework of the inverse problem of the oscilation

theory.

On the basis parametric identification of the flexible rotor systems on the

measured vibration parameters of products was developed, providing simultaneous

determining of the mass, rigidity, and demping characteristics of the rotor and
its eccentricities as well.

The identification algorithms obtained on measured parameters of products

allowed to develop three groups of flexible rotor balancing, which don't require

knowing rotor oscillation forms or operating at critical angular speeds:

- with emploing only system of testing masses and a single testlng

start-up;

- without employing testing masses and start-ups, grounding known anO

unknown elasticity-and-inertia characteristics.

The accomlished research on stability and accuracy of the suggested

identification algorithms allows to have optimal relations Between tne regu_reo

balancing accuracy, measuring instruments and dynamic model of the system.

The obtained results were used for research of dynamic and high-frequency

balancing of a turbopump assembly unit, a turbogenerator, rotors of gas turbine

engine compressors, and they allowed to considerably lower the vibration level,

deflections and tensions in the parts of flexible rotor systems, thus increasing

life and reliability of products.
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Fig. 1. The rotor scheme.
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Fig, 2. Amplitude-and-frequency characteristics of t_e rotor.

I - before the balancing; 2 - after the balancing
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F Table I

Data for identification of eccentricities o÷ a

five-masses rotor

a

N ! masses _ deflections ! static coeff_clents of In,luence !

' m , kg ' -5 ' -9 !

' i ' y -10 m ' _ . 10 , m/N

' ' i ' ik
I I I ....... __ ..... I

, I J I 2 3 4 5 '
I

I.! 9,03 ' 7,87 i 9,2 7,4 6,23 4,8 2,77 '

2.! 9,96 ' 11,38 J 7,45 9,0 8,95 7,3 5,25 !

3.! 12,32 ' 11,16 J 5,3 7,85 9,88 8,5 b,8 !

4.! 12,53 ' 11,37 J 4,2 7,0 8,b2 9,7 8,98 !

5.! 17,6 ' 10,35 ' 2,62 4,67 7,6 9,43 10,8 !
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